Template:Cantic table

From blackwiki
Jump to navigation Jump to search

*n33 orbifold symmetries of cantic tilings: 3.6.n.6

Symmetry
*n32
[1+,2n,3]
= [(n,3,3)]
Spherical Euclidean Compact Hyperbolic Paracompact
*233
[1+,4,3]
= [3,3]
*333
[1+,6,3]
= [(3,3,3)]
*433
[1+,8,3]
= [(4,3,3)]
*533
[1+,10,3]
= [(5,3,3)]
*633...
[1+,12,3]
= [(6,3,3)]
*∞33
[1+,∞,3]
= [(∞,3,3)]
Coxeter
Schläfli
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
h2{4,3}
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{6,3}
CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{8,3}
CDel node h1.pngCDel 10.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel label5.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{10,3}
CDel node h1.pngCDel 12.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel label6.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{12,3}
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png
h2{∞,3}
Cantic
figure
Spherical cantic cube.png Uniform tiling 333-t12.png H2 tiling 334-6.png H2 tiling 335-6.png H2 tiling 336-6.png H2 tiling 33i-6.png
Vertex 3.6.2.6 3.6.3.6 3.6.4.6 3.6.5.6 3.6.6.6 3.6..6
N33 fundamental domain t01.png
Domain
332 fundamental domain t01.png 333 fundamental domain t01.png 433 fundamental domain t01.png 533 fundamental domain t01.png 633 fundamental domain t01.png I33 fundamental domain t01.png
Wythoff 2 3 | 3 3 3 | 3 4 3 | 3 5 3 | 3 6 3 | 3 ∞ 3 | 3
Dual
figure
Spherical triakis tetrahedron.png Rhombic star tiling 3 vertices.png Uniform dual tiling 433-t12.png
Face V3.6.2.6 V3.6.3.6 V3.6.4.6 V3.6.5.6 V3.6.6.6 V3.6.∞.6
Template documentation

See also

Template:Tiling templates